spectroscopy and microscopy

The spectroscopy and microscopy group provides quantitative analysis of product formulations, identification of unknown materials, compositional analysis of polymers and resins, and failure analysis of coatings and adhesives.

energy-dispersive x-ray spectroscopy

Energy-dispersive X-ray spectroscopy is capable of surveying small samples or particles for elements from boron through uranium. Line profiles compare element concentration versus depth. Elemental mapping can be conducted to document the distribution of elements across a sample surface.

fourier-transform infrared spectroscopy

Fourier-transform infrared spectroscopy is a commonly used problem-solving tool. The infrared analysis provides general information about a sample’s chemical composition. The infrared spectrum can be used to confirm the identity of a material or provide generic information regarding an unknown material’s chemical family. A variety of sample handling accessories are available.

mass spectrometry

Mass spectrometry provides essential chemical information for resolving many complex industrial problems. Various ionization techniques and interface capabilities for HPLC and GPC separations enable effective analyses for a wide range of materials.

nuclear magnetic resonance spectroscopy

Nuclear magnetic resonance (NMR) spectroscopy is an analytical tool that provides detailed information about the molecular structure of a material. NMR is most commonly used to analyze organic materials such as solvents, soluble polymers, surfactants and reaction intermediates. A variety of different NMR experiments help determine chemical information.

optical light microscopy

Optical light microscopy is used to examine and document sample appearance and features.

scanning electron microscopy

Scanning electron microscopy (SEM) offers high magnification and resolution for examination of sample surfaces and cross sections. Imaging modes provide information about sample morphology and texture or information regarding variability in sample composition and density. Variable pressure imaging allows analysis of uncoated or non-conductive samples.

x-ray diffraction

X-ray diffraction is useful for the identification of crystalline compounds. This nondestructive technique provides semi-quantitative data on mixtures. Computer-based library searching permits positive identification of unknowns. Certain crystalline phases can be quantified.

x-ray fluorescence

Wavelength dispersive X-ray fluorescence can qualitatively and quantitatively determine the presence of elements from carbon through uranium. Both solids and liquids can readily be assayed for composition or contamination. Quantitative analyses can be performed either via a calibration curve or a standardless fundamental parameters technique.

巅峰捕鱼 黑龙江36选7开奖中奖查询 3d组三倍投计划 福建31选7中4个奖多少 捕鱼机器多少钱 双色球中奖号码综合分布图 福建快三遗漏一定牛 香港六和今晚特码资料 湖南彩票资讯网 3d彩票论坛首页 广西快三预测大小单双 江苏11选5一天开多少期 广东11选5万能7码 福建31选7第19095期 3d福利视频软件